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Projects include:

Each student needs to review at least three papers and write a 
literature review on these subjects. The subjects are as follows, 
but not limited to them:

1.immutable databases, decentralized databases, and smart 
contracts1.

2.Real-time Data Processing with In-memory Databases: This is a hot 
topic as it offers a glimpse into the exciting future of database 
research1.

3.Cloud-Inspired Operating Models: Cloud-inspired operating models, 
cybersecurity, and data insights are among the top enterprise storage 
trends of 2023-4.

4.Artificial Intelligence and Database Technology

5.Object Storage as Primary Storage

https://www.knowledgehut.com/blog/database/database-research-topics
https://www.knowledgehut.com/blog/database/database-research-topics
https://www.gartner.com/en/documents/4489199
https://cloudian.com/blog/2023-data-storage-trends/
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Outlines of this course

▪ Complex Data Types

• Semi-structured data

• Textual data

• Spatial Data

▪ Transaction

▪ Concurrency 

▪ Recovery

▪ Parallel and Distributed Database



Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Chapter 8: Complex Data Types

http://www.db-book.com/
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Outline

▪ Semi-Structured Data

▪ Object Orientation

▪ Textual Data

▪ Spatial Data
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Relational Model and Non-Atomic Data Types

• The relational model is widely used for data representation 
across various application domains.

• A key requirement of the relational model is atomic data 
values, disallowing multivalued, composite, and other 
complex data types.

• the relational model's constraints on data types can cause 
more problems than they solve in certain applications.

• Non-atomic data types include semi-structured data, object-
based data, textual data, and spatial data.

• PostgreSQL, for example, allows columns to contain sub-values, 
such as arrays of base types and multi-dimensional arrays.
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limitations of the relational model

1. Performance Issues: Dealing with large datasets or complex joins between 
tables can lead to slow performance. Optimizing indexing strategies can 
also be challenging

2. Scalability Challenges: While generally scalable, managing the relational 
model as the database grows in size can become difficult. Adding new 
tables or indexes can be time-consuming, and managing relationships 
between tables can become complex

3. Cost: Relational databases can be expensive to license and maintain, 
particularly for large-scale deployments. They often require dedicated 
hardware and specialized software, adding to the cost

4. Limited Flexibility: The relational model is designed to work with tables 
that have predefined structures, making it difficult to work with 
unstructured or semi-structured data

5. Data Redundancy: In some cases (Denormalization, Poor Design), the 
relational model can lead to data redundancy, which can impact data 
integrity and efficiency
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Semi-Structured Data

▪ Many applications require storage of complex data, 

whose schema changes often

▪ The relational model’s requirement of atomic data 

types may be an overkill

• E.g., storing set of interests as a set-valued 

attribute of a user profile may be simpler than 

normalizing it
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Structured data example

• The mathematical term “relation” specifies a formed set of data held as a 
table.

• In structured data, all row in a table has the same set of columns.
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Semi-structured data 

▪ Semi-structured data is 
information that doesn’t 
consist of Structured data 
(relational database) but still 
has some structure to it.

▪ In JavaScript Object 
Notation (JSON) format. It 
also includes key-
value stores 
and graph databases.
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Semi-Structured Data

▪ Data exchange can benefit greatly from semi-

structured data

• Exchange can be between applications, or 

between back-end and front-end of an application

• Web-services are widely used today, with complex 

data fetched to the front-end and displayed using 

a mobile app or JavaScript

▪ JSON and XML are widely used semi-structured data 

models
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Features of Semi-Structured Data Models

▪ Flexible schema

• Wide column representation: allow each tuple 

to have a different set of attributes, can add 

new attributes at any time
▪ user1 = {"username": "user1", "email": "user1@email.com", "bio": 

"Hello, world!", "website": "www.user1.com", "phone number": 

"+1234567890"}

▪ user2 = {"username": "user2", "email": "user2@email.com"}

• Sparse column representation: schema has a 

fixed but large set of attributes, by each tuple 

may store only a subset
▪ user1_preferences = {"likes_sports": True, "likes_cooking": False} 

▪ user2_preferences = {"likes_travel": True} 
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Features of Semi-Structured Data Models

▪ Multivalued data types:allow attributes to contain non-atomic values.

• Sets, multisets

▪ E.g.,: User 1, set of interests {‘Sport, ‘Cooking’, ‘Travel’, ‘anime’, 

‘jazz’}

UserID UserName Email

1 User1 user1@email.com

2 User2 user2@email.com

InterestID Interest

1 Sports

2 Cooking

3 Travel

UserID InterestID

1 1

1 3
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(Cont.)Features of Semi-Structured Data Models

▪ Multivalued data types:allow attributes to contain non-

atomic values.

• Key-value map (or just map for short)

▪ Store a set of key-value pairs

▪ E.g., {(brand, Apple), (ID, MacBook Air), (size, 13), 

(color, silver)}

▪ Operations on maps:  put(key, value), get(key), 

delete(key)

• In a relational database, you need to have a table for 

each of which due to normalization

▪ e-commerce sites often list specifications or details for each product 

that they sell, such as brand, model, size, color, and numerous 

other product-specific details.

▪ specifications form the key, and the associated value is stored with the key. 
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(Cont.)Features of Semi-Structured Data Models

▪ Key-value map: Example: a social media application where 
users can post status updates

RELATIONAL DATABASE: 
SELECT *
FROM Posts

LEFT JOIN Images ON Posts.post_id = Images.post_id
LEFT JOIN Locations ON Posts.post_id = Locations.post_id
LEFT JOIN Tags ON Posts.post_id = Tags.post_id
LEFT JOIN Reactions ON Posts.post_id = Reactions.post_id
LEFT JOIN Comments ON Posts.post_id = Comments.post_id

WHERE Posts.post_id = 123;

JSON:{
"post_id": 123,
"text": "Hello, world!",
"images": ["img1.jpg", "img2.jpg"],
"location": "Paris, France",
"tags": ["friend1", "friend2"],
"reactions": {"likes": 100, "loves": 50, "wows": 10},
"comments": [

{"user": "friend1", "text": "Great post!", "time": "2022-01-
01T10:00:00Z"},

{"user": "friend2", "text": "Thanks for sharing!", "time": "2022-01-
01T11:00:00Z"}

]
}
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(Cont.) Features of Semi-Structured Data Models

▪ Arrays 

• Widely used for scientific and monitoring applications

• E.g., readings taken at regular intervals can be represented as array 

of values instead of (time, value) pairs

▪ [5, 8, 9, 11] instead of {(1,5), (2, 8), (3, 9), (4, 11)}

▪ scientific applications may need to store images, which are two-

dimensional arrays of pixel values

▪ Multi-valued attribute types 

• Modeled using non first-normal-form (NFNF) data model

• Supported by most database systems today:  Oracle, PostgreSQL

▪ Array database:  a database that provides specialized support for arrays

• E.g., compressed storage, query language extensions etc

• Oracle GeoRaster, PostGIS extension to PostgreSQL, the SciQL

extension of MonetDB, and SciDB
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Nested Data Types

▪ Hierarchical data is common in many applications

• Many databases support such types as part of their 

support for object-oriented data

▪ JSON: (JavaScript Object Notation)

• Widely used today

▪ XML: (Extensible Markup Language)

• Earlier generation notation, still used extensively
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JSON
▪ Textual representation widely used for data exchange & store complex data

▪ Example of JSON data

{
"ID": "22222",
"name": {

"firstname: "Albert",
"lastname: "Einstein"

},
"deptname": "Physics",
"children": [

{"firstname": "Hans", "lastname": "Einstein" 
},

{"firstname": "Eduard", "lastname": "Einstein" 
}

]
} 

▪ Types: integer, real, string, and 

• Objects: are key-value maps, i.e. sets of (attribute name, value) pairs

• Arrays are also key-value maps (from offset to value) 
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JSON

▪ JSON is ubiquitous in data exchange today

• Widely used for web services

• Most modern applications are architected around on web services

▪ SQL extensions for

• JSON types for storing JSON data

• Extracting data from JSON objects using path expressions

▪ E.g.  V-> ID, or v.ID

• Generating JSON from relational data

▪ E.g. json.build_object(‘ID’, 12345, ‘name’, ‘Einstein’)

• Creation of JSON collections using aggregation

▪ E.g. json_agg aggregate function in PostgreSQL

• Syntax varies greatly across databases
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XML

▪ XML uses tags to mark up text

▪ E.g. 

<course>

<course id> CS-101 </course id>

<title> Intro. to Computer Science </title>

<dept name> Comp. Sci. </dept name>

<credits> 4 </credits>

</course> 

▪ Tags make the data self-documenting

▪ Tags can be hierarchical
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Example of Data in XML
▪ <purchase order>

<identifier> P-101 </identifier>

<purchaser>

<name> Cray Z. Coyote </name>

<address> Route 66, Mesa Flats, Arizona 86047, USA </address>

</purchaser>

<supplier>

<name> Acme Supplies </name>

<address> 1 Broadway, New York, NY, USA </address>

</supplier>

<itemlist>

<item>

<identifier> RS1 </identifier>

<description> Atom powered rocket sled </description>

<quantity> 2 </quantity>

<price> 199.95 </price>

</item>

<item>…</item>

</itemlist>

<total cost> 429.85 </total cost>

….

</purchase order>
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XML Cont.

▪ XQuery language developed to query nested XML 

structures

• Not widely used currently

▪ SQL extensions to support XML

• Store XML data

• Generate XML data from relational data

• Extract data from XML data types

▪ Path expressions 

▪ See Chapter 30 (online) for more information
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Knowledge Representation

▪ RDF: Resource Description Format

• is a standard way to make statements about resources. 

An RDF statement consists of three components, 

referred to as a triple:

1.Subject is a resource being described by the triple.

2.Predicate describes the relationship between the 

subject and the object.

3.Object is a resource that is related to the subject.
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Knowledge Representation

▪ RDF: Resource Description Format

▪ RDF is a data representation standard based on the entity-

relationship mode: Subject(Entity), Predicate(Attribute), 

Object(Value)

▪ (ID, attribute-name, value)

▪ (ID1, relationship-name, ID2)

▪ where ID, ID1 and ID2 are identifiers of entities; 

entities are also referred to as resources in RDF

▪ Unlike, the E-R model, the RDF model only 

supports binary relationships, and it does not 

support more general n-ary relationships; 

▪ Each triple has a unique identifier which is 

International Resource Identifier (IRI)
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An example of a triple

Subject Predicate Object

Alireza hasSpouse Fatima

Alireza hasAge 25
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Triple View of RDF Data

a small part of the University database
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Graph View of RDF Data

▪ Knowledge graph
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Knowledge Representation

▪ Representation of human knowledge is a long-standing goal of AI

▪ A representation of information using the RDF graph model (or its 

variants and extensions) is referred to as a knowledge graph. 

▪ Knowledge graphs are used for a variety of purposes. One such 

application is to store facts that are harvested from a variety of data 

sources, such as Wikipedia, Wikidata, and other sources on the web. 

▪ RDF: Resource Description Format

• Simplified representation for facts, represented as triples

(subject, predicate, object) 

▪ E.g.,  (NBA-2019, winner, Raptors)

(Washington-DC, capital-of, USA)

(Washington-DC, population, 6,200,000)
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Knowledge graph

▪ ·Resurgence of interest in Knowledge Graphs· 

• Search engines

• Data integration

• Artificial Intelligence

Paris France

Roman 
Empire

City Of

Capital of

Node NodeEdge

(580) CS520: 2021 

Knowledge Graphs Seminar 

Session 1 - YouTube

https://www.youtube.com/watch?v=FRcF6sh8sI0&list=PLDhh0lALedc5paY4N3NRZ3j_ui9foL7Qc
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Human

SleepCoffee

Consume Needs

Prevents
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Data Integration

▪ For example Data reside in multiple sources· 

• Company directory, product catalog, government 

database, weather report, 

▪ Answering queries requires combining data from multiple 

sources. 

• We need to provide translations of data between 

multiple sources· 

▪ Direct mappings

▪ Shared schema
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Data Integration

▪ Schema-free approach to data integration. 

• Convert the relational data from multiple sources into 

triples· 

▪ Stored in a graph database· 

• Referred to as a knowledge graph. 

▪ Deal with schema mappings/translations on "pay as 

you go" basis· 

I. Visualization

II. Optimized for graph traversals
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Knowledge graph: Natural Language Processing

▪ Entity Extraction:

• Albert Einstein was a German-born theoretical 

physicist who developed the theory of relativity.

• Relation Extraction->

• New relations

▪ Questions answering

▪ Common reasoning
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Knowledge graph in Object 
detection 
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WIKIDATA.ORG-> 
KNOWLEDGE GRAPH

https://www.wikidata.org/wiki/Q80053

https://www.wikidata.org/wiki/Q80053
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Querying RDF: SPARQL

▪ SPARQL is a query language designed to query RDF 

data. 

• is based on triple patterns, which look like RDF triples 

but may contain variables. For example,

▪ Triple patterns

• ?cid title "Intro. to Computer Science" 

▪ match all triples whose predicate is “title” and 

object is “Intro. to Computer Science”
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University Database
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Querying RDF: SPARQL

▪ Another Example of SPARQL:

• ?cid title "Intro. to Computer Science" 

?sid course ?cid

▪ On the university-triple dataset, the first triple pattern matches the 

triple:

• (CS-101, title, "Intro. to Computer Science"), 

▪ the second triple pattern matches 

• (sec1, course, CS-101). 

▪ The shared variable ?cid enforces a join condition between the 

two triple patterns.



40
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Graph View of RDF Data

▪ Knowledge graph
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Querying RDF: SPARQL

▪ SPARQL queries

• select ?name

where {

?cid title "Intro. to Computer Science" .

?sid course ?cid .

?id takes ?sid .

?id name ?name .

} 

• Also supports 

▪ Aggregation, Optional joins (similar to outerjoins), Subqueries, etc.

▪ Transitive closure on paths

The following query retrieves names of all students who 

have taken a section whose course is titled “Intro. to 

Computer Science”.
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Graph View of RDF Data

▪ Knowledge graph
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RDF Representation (Cont.)

▪ RDF triples represent binary relationships

▪ How to represent n-ary relationships?

• Approach 1 (from Section 6.9.4): Create artificial entity, 

and link to each of the n entity's 

▪ E.g., (Barack Obama, president-of, USA, 2008-2016) 

can be represented as 

(e1, person, Barack Obama), (e1, country, USA), 

(e1, president-from, 2008) (e1, president-till, 2016)

• Approach 2: use quads instead of triples, with context 

entity

▪ E.g., (Barack Obama, president-of, USA, c1)

(c1, president-from, 2008) (c1, president-till, 2016)
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RDF Representation (Cont.)

▪ RDF widely used as knowledge base representation

• DBPedia, Yago, Freebase, WikiData, ..

▪ Linked open data project aims to connect different 

knowledge graphs to allow queries to span databases
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RDF DATA STORES:
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Object Orientation

▪ Object-relational data model provides richer type 

system 

• with complex data types and object orientation

▪ Applications are often written in object-oriented 

programming languages

• Type system does not match relational type 

system

• Switching between imperative language and SQL 

is troublesome
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Object Orientation

▪ Approaches for integrating object-orientation with 

databases

• Build an object-relational database, adding 

object-oriented features to a relational database

• Automatically convert data between programming 

language model and relational model; data 

conversion specified by object-relational 

mapping

• Build an object-oriented database that natively 

supports object-oriented data and direct access 

from programming language
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Object-Oriented Programming and Databases

• Point 1: Many database applications are written using an 
object-oriented programming language.

• Examples: Java, Python, C++

• Point 2: These applications need to store and fetch data from 
databases.

• Point 3: There is a type difference between the native type 
system of the object-oriented programming language and the 
relational model supported by databases.

• Point 4: Data need to be translated between the two models 
whenever they are fetched or stored.
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Object-Relational Database Systems

▪ SQL allow creation of structured user-defined types:

• create type Person

(ID varchar(20) primary key,

name varchar(20),

address varchar(20))  ref from(ID); 

• create table people of Person;

▪ Then we create a new person as follows:

• insert into people (ID, name, address) values ('12345', 'Srinivasan', 

'23 Coyote Run')
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Object-Relational Database Systems

▪ Table user types

• create type interest as table (

topic varchar(20),

degree_of_interest int);

• SQL Server allows table-valued types(e.g., interest 

type) to be declared as shown in the following 

example:

create table users (

ID varchar(20),

name varchar(20),

interests interest); 

▪ Array, multiset data types also supported by many 

databases
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Type and Table Inheritance

▪ Type inheritance

• create type Person

(ID varchar(20) primary key,

name varchar(20),

address varchar(20))  ref from(ID);  

We want to store extra information in the database about 

people who are students

• create type Student under Person

(degree varchar(20)) ;

create type Teacher under Person

(salary integer);

• Both Student and Teacher inherit the attributes of Person
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Type and Table Inheritance

▪ Table inheritance syntax in PostgreSQL and oracle

• create table students

(degree varchar(20))

inherits people;

create table teachers

(salary integer)

inherits people; 

• create table people of Person;

create table students of Student

under people;

create table teachers of Teacher

under people; 

▪ As a result, every attribute present in the table people is also 

present in the subtables students and teachers.
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Reference Types

▪ For example, we could define the Person type as 

follows, with a reference-type declaration:

▪ Creating reference types

• create type Person

(ID varchar(20) primary key,

name varchar(20),

address varchar(20))

ref from(ID);

create table people of Person; 
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Reference Types

▪ a type Department with a field name and a field head that is a 

reference to the type Person. 

▪ create type Department (

dept_name varchar(20),

head ref(Person) scope people);

create table departments of Department

▪ scope clause above completes the definition of the foreign 

key from departments.head to the people relation.

insert into departments values ('CS', '12345’) 
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Object-Relational Mapping

▪ Object-relational mapping (ORM) systems allow 

• Specification of mapping between programming

language objects and database tuples 

• Automatic creation of database tuples upon creation of 

objects

• Automatic update/delete of database tuples when objects 

are update/deleted

• Interface to retrieve objects satisfying specified 

conditions

▪ Details in Section 9.6.2

• Hibernate ORM for Java

• Django ORM for Python
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ORM benefits 
▪ Simplify the job of developers by providing an object 

model, while still leveraging the power of a robust 
relational database.

▪ ORM systems can offer significant performance 
improvements when operating on objects cached in 
memory, compared to direct access to the underlying 
database.

▪ ORM can use any number of databases to store data, all 
with the same high-level code.

▪ ORM systems abstract away minor SQL differences 
between databases. This makes migration from one 
database to another relatively straightforward when 
using an ORM, as opposed to the significant challenges 
posed by SQL differences.
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ORM EXAMPLE

Imagine you're building an online store. You need to manage data like 
products, customers, and orders.
Without ORM:

•You'd write complex SQL queries to interact with the database: add new 
products, update order details, etc. 
•You'd need to understand the specific syntax for your chosen database 
(MySQL, PostgreSQL, etc.). 
•Switching databases would require rewriting most or all of your SQL code, due 
to different syntax and functionalities. 

With ORM:
•You'd define your data structures as objects (Product, Customer, Order). 
•You'd use simple, object-oriented methods to interact with your data:

•product.save(), order.update_status(). 
•The ORM system translates these object operations into the appropriate SQL 
queries 
•Switching databases might involve some configuration changes within the ORM, 
but most of your code would remain the same. 
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Performance issue of ORM

▪ We have a User table in a database and we are using an ORM system in our 
application.

▪ we want to update the status of all users to inactive.

• This result in a separate UPDATE statement for each user, which could be 
very inefficient if there are a large number of users.

▪ Alternative where we bypass the ORM and write the update directly in SQL

• Executing a single UPDATE statement for all users is significantly 

more efficient than issuing individual statements for each user.
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Textual Data

• Information Retrieval Definition: 
• Information retrieval is the process of querying 

unstructured textual data. Which is used in

• Traditional Model: Textual information is organized 
into documents.

• Database Context: A text-valued attribute can be 
considered a document.

• Web Context: Each web page can be considered a 
document.
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Textual Data (Cont.)

• Keyword Description: Desired documents are typically 
described by a set of keywords.

• Examples: Keywords such as “database system” can 
locate documents on database systems. “Stock” and 
“scandal” can locate articles about stock-market scandals.

• Document Keywords: Documents have a set of keywords 
associated with them. Typically, all words in the 
documents are considered keywords.

• Keyword Query: A keyword query retrieves documents
whose set of keywords contains all the keywords in the 
query.
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Textual Data

• Information retrieval: querying of unstructured data

• Simple model of keyword queries:  given query 
keywords, retrieve documents containing all the 
keywords

• More advanced models rank relevance of documents

• Today, keyword queries return many types of 
information as answers

• E.g., a query “cricket” typically returns information 
about ongoing cricket matches like scores, league 
table

• Relevance ranking

• Essential since there are usually many documents 
matching keywords
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Keyword Search and Information Retrieval

• Keyword Search

• Initially targeted at document repositories within 

organizations or domain-specific document repositories 

such as research publications.

• Now, also important for documents stored in a database.

• Keyword-based Information Retrieval

• Used for retrieving not only textual data, but also other 

types of data.

• Video and audio data that have descriptive keywords

associated with them can be retrieved.

• Example: A video movie may have keywords such as its 

title, director, actors, and genre. An image or video clip 

may have tags, which are keywords describing the image 

or video clip.
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Keyword Search and Information Retrieval

• Web Search Engines

• At the core, they are information retrieval systems.

• They retrieve and store web pages by crawling 

the web.
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Relevance Ranking

• Document Set Size

• The set of all documents that contain the 
keywords in a query may be very large.

• There are billions of documents on the web, and 
most keyword queries on a web search engine 
find hundreds of thousands of documents 
containing some or all of the keywords.

• Relevance of Documents

• Not all the documents are equally relevant to a 
keyword query.

• Information-retrieval systems estimate the 
relevance of documents to a query and return 
only highly ranked documents as answers.
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Ranking using TF-IDF

▪ Term: keyword occurring in a document/query

▪ Term Frequency: TF(d, t), the relevance of a term t to a 

document d

• One definition:

• where 

▪ n(d,t) = number of occurrences of term t in document d

▪ n(d)   = number of terms in document d

▪ takes the length of the document into account.

▪ The relevance grows with more occurrences of a term 

in the document.
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Query and Keyword Relevance

• Multiple Keywords

• A query Q may contain multiple keywords.

• The relevance of a document to a query with two or 

more keywords is estimated by combining the 

relevance measures of the document for each 

keyword.

• Combining Measures

• A simple way of combining the measures is to add 

them up.
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Query and Keyword Relevance

• Keyword Frequency

• Not all terms used as keywords are equal.

• Suppose a query uses two terms, one of which 

occurs frequently, such as “database”, and 

another that is less frequent, such as 

“Silberschatz”.

• A document containing “Silberschatz” but not 

“database” should be ranked higher than a 

document containing the term “database” but not 

“Silberschatz”.
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Ranking using TF-IDF

▪ Inverse document frequency: IDF(t)

• One definition:

• IDF(t) =
1

𝑛(𝑡)

• n(t) denotes the number of documents (among those 

indexed by the system) that contain the term t

▪ Relevance of a document d to a set of terms Q

• One definition: 𝑟 𝑑, 𝑄 = σ𝑡∈𝑄 𝑇𝐹 𝑑, 𝑡 ∗ 𝐼𝐷𝐹(𝑡)

• Other definitions 

▪ take proximity of words into account

▪ Stop words are often ignored 
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Example for Inverse Document Frequency (IDF)

• Imagine a collection with three documents (A, B, C) 
and two keywords ("mushroom" and "poisonous 
mushroom"):

• * Document A: "Mushrooms are living organisms 
that..."

• * Document B: "There are many types of 
mushrooms, some edible and others poisonous."

• * Document C: "Poisonous mushrooms can be very 
dangerous."

• Calculating IDF:

• * Keyword "mushroom": ?

• * Keyword "poisonous mushroom": ?
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Example for IDF (Cont.)

• Calculating IDF:

• * Keyword "mushroom":

• * Number of documents containing "mushroom" 
(n(mushroom)) = 3

• * IDF(mushroom) = 1 / 3 ≈ 0.33

• * Keyword "poisonous mushroom":

• * Number of documents containing "poisonous 
mushroom" (n("poisonous mushroom")) = 2

• * IDF("poisonous mushroom") = 1 / 2 ≈ 0.50
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Example of document relevance calculation

Scenario:
Imagine a collection with three documents (A, B, C) 
and two keywords ("music" and "concert"):
•Document A: "I enjoy listening to music." (Mentions 
"music" once) 
•Document B: "Last weekend, I went to a music 
concert." (Mentions both "music" and "concert" 
once) 
•Document C: "Did you know the speed of sound 
varies depending on the medium?" (Mentions 
neither "music" nor "concert") 
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Example of document relevance calculation (Cont.)

Calculating Relevance (r(d, Q)) for the query "music 
concert":
1. Document A:
•TF(A, "music") = 1: Document A mentions "music" 
once. 
•TF(A, "concert") = 0: Document A doesn't mention 
"concert". 
•IDF("music") = 0.2 (assumed value): Let's assume 
"music" is a common term with a lower IDF. 
•IDF("concert") = 0.8 (assumed value): Let's assume 
"concert" is a less common term with a higher IDF. 
•r(A, "music concert") = TF(A, "music") * IDF("music") 
+ TF(A, "concert") * IDF("concert") = 1 * 0.2 + 0 * 0.8 = 
0.2
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Example of document relevance calculation (Cont.)

Calculating Relevance (r(d, Q)) for the query "music concert":
2. Document B:
•TF(B, "music") = 1: Document B mentions "music" once. 
•TF(B, "concert") = 1: Document B mentions "concert" once. 
•IDF("music") = 0.2 (assumed value): Consistent with Document 
A. 
•IDF("concert") = 0.8 (assumed value): Consistent with 
Document A. 
•r(B, "music concert") = TF(B, "music") * IDF("music") + TF(B, 
"concert") * IDF("concert") = 1 * 0.2 + 1 * 0.8 = 1.0
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Example of document relevance calculation (Cont.)

3. Document C:
•TF(C, "music") = 0: Document C doesn't mention "music". 
•TF(C, "concert") = 0: Document C doesn't mention "concert". 
•IDF("music") = 0.2 (assumed value): Consistent with 
Documents A and B. 
•IDF("concert") = 0.8 (assumed value): Consistent with 
Documents A and B. 
•r(C, "music concert") = TF(C, "music") * IDF("music") + TF(C, 
"concert") * IDF("concert") = 0 * 0.2 + 0 * 0.8 = 0
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Stop Words in Information Retrieval

• Information-retrieval systems define a set of 

words, called stop words, containing 100 or so 

of the most common words, and ignore these 

words when indexing a document.

• Such words are not used as keywords, and 

they are discarded if present in the keywords 

supplied by the user.

• and,” “or,” “a,” and so on.

• Including them in the indexing process and 

user queries can increase processing

time and potentially distract the system from 

identifying more informative keywords.
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Proximity of Terms

• Proximity of Terms

• Another factor taken into account when a query 

contains multiple terms is the proximity of the 

terms in the document.

• If the terms occur close to each other in the 

document, the document will be ranked higher 

than if they occur far apart.

• The formula for r(d, Q) can be modified to take 

proximity of the terms into account.
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Ranking Using Hyperlinks

▪ Hyperlinks provide very important clues to 

importance

▪ Google introduced PageRank, a measure of 

popularity/importance based on hyperlinks 

to pages

• Pages hyperlinked from many pages 

should have higher PageRank

• Pages hyperlinked from pages with 

higher PageRank should have higher

PageRank

▪ Formalized by random walk model
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Ranking Using Hyperlinks

▪ Let T[i, j] be the probability that a random walker

who is on page i will click on the link to page j

• Assuming all links from i has an equal probability 

of being followed: 𝑻 𝒊, 𝒋 =
1

𝑁𝑖

• 𝑵𝑖: number of outgoing links from Page i

▪ Then PageRank[j] as P[j] for each page j can be 

defined as 𝑃 𝑗 =
𝛿

𝑁
+ 1 − 𝛿 ∗ σ𝑖=1

𝑁 (𝑇 𝑖, 𝑗 . 𝑃[𝑖])

• N = total number of pages

• δ= a constant usually set to 0.15
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Ranking Using Hyperlinks

▪ Definition of PageRank is circular, but can be 

solved as a set of linear equations

• Simple iterative technique works well

• Initialize all P[i] = 1/N

• In each iteration use equation

• 𝑃 𝑗 =
𝛿

𝑁
+ 1 − 𝛿 ∗ σ𝑖=1

𝑁 (𝑇 𝑖, 𝑗 . 𝑃[𝑖]) to 

update P

• Stop iteration when changes are small, or 

some limit (say 30 iterations) is reached.
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Example

• an initial PageRank vector P where each page has an 
initial score of 0.25= 1/N=1/4, so:

𝑃 𝑗 =
𝛿

𝑁
+ 1 − 𝛿 ∗ ෍

𝑖=1

𝑁

(𝑇 𝑖, 𝑗 . 𝑃[𝑖])

• Let's calculate P[j] for each page:
• P[A]=0.15/4​+(1−0.15)×[(0×0.25)+(0.5×0.25)+(0.5×0.25)+(0.

5×0.25)]= 0.35625

• After one iteration of the PageRank algorithm, the 
PageRank scores are approximately.

a simple web network with four web 
pages: A, B, C, D

0.5
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Retrieval Effectiveness

▪ Measures of effectiveness

• Precision: what percentage of returned 

results are relevant

• Recall: what percentage of relevant 

results were returned

▪since search engines find a very large 

number of answers, precision and recall 

numbers are usually measured by 

“@K”, where K is the number of answers 

viewed
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Spatial Data
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Spatial Data

▪ Spatial databases store information related to spatial locations, and 

support efficient storage, indexing and querying of spatial data.

• Geographic data -- road maps, land-usage maps, 

topographic elevation maps, political maps showing boundaries, 

land-ownership maps, and so on.  

▪ Geographic information systems are special-purpose 

databases tailored for storing geographic data. 

▪ Round-earth coordinate system may be used

• (Latitude, longitude, elevation)

• Geometric data: design information about how objects are 

constructed . For example, designs of buildings, aircraft, 

layouts of integrated-circuits.  

▪ 2 or 3 dimensional Euclidean space with (X, Y, Z) coordinates
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Represented of Geometric Information

▪ Various geometric constructs can be represented in a 

database in a normalized fashion (see next slide)

▪ A line segment can be represented by the coordinates of 

its endpoints.

▪ A polyline or linestring consists of a connected sequence 

of line segments and can be represented by a list containing 

the coordinates of the endpoints of the segments, in 

sequence.

▪ Polygons are represented by a list of vertices in order. 

• The list of vertices specifies the boundary of a polygonal 

region.

• Can also be represented as a set of triangles 

(triangulation) 
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Representation of Geometric Constructs
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For example

• SQL Server and PostGIS support the geometry and geography 

types

• subtypes such as point, linestring, curve, polygon, as 

collections of these types called multipoint, multilinestring, 

multicurve and multipolygon. 

• Textual representations of these types are defined by the OGC 

standards, and can be converted to internal representations 

using conversion functions. 

• For example, 

• LINESTRING(1 1, 2 3, 4 4) defines a line that connects 

points (1, 1), (2, 3) and (4, 4), 

• POLYGON((1 1, 2 3, 4 4, 1 1)) defines a triangle 

defined by these points. 
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To Design Databases

▪ Represent design components as objects (generally 

geometric objects); the connections between the 

objects indicate how the design is structured.

▪ Simple two-dimensional objects: points, lines, 

triangles, rectangles, polygons.

▪ Complex two-dimensional objects: formed from simple 

objects via union, intersection, and difference

operations.

▪ Complex three-dimensional objects: formed from 

simpler objects such as spheres, cylinders, and 

cuboids, by union, intersection, and difference

operations.
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Representation of Geometric Constructs

▪ Design databases also store non-spatial information 
about objects (e.g., construction material, color, etc.)

▪ Spatial integrity constraints are important.

• E.g., pipes should not intersect, wires should not be too 
close to each other, etc.
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Geographic Data

▪ Raster data consist of bit maps or pixel maps, in two or 

more dimensions.

• Example 2-D raster image: satellite image of cloud

cover, where each pixel stores the cloud visibility in 

a particular area.

• Additional dimensions might include the temperature 

at different altitudes at different regions, or 

measurements taken at different points in time.

▪ Design databases generally do not store raster data.
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Geographic Data (Cont.)

▪ Vector data are constructed from basic geometric objects:  

points, line segments, triangles, and other polygons in 

two dimensions, and cylinders, spheres, cuboids, and 

other polyhedrons in three dimensions.

▪ Vector format often used to represent map data.

• Roads can be considered as two-dimensional and 

represented by lines and curves.

• Some features, such as rivers, may be represented 

either as complex curves or as complex polygons, 

depending on whether their width is relevant.

• Features such as regions and lakes can be depicted as 

polygons.
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Spatial Queries
▪ Region queries deal with spatial regions. e.g., ask for objects 

that lie partially or fully inside a specified region

• E.g., PostGIS ST_Contains(), ST_Overlaps(), …

▪ Nearness queries request objects that lie near a specified 

location.

▪ Nearest neighbor queries, given a point or an object, find

the nearest object that satisfies given conditions.

▪ Spatial graph queries request information based on spatial 

graphs

• E.g., shortest path between two points via a road 

network

▪ Spatial join of two spatial relations with the location playing 

the role of join attribute.

• Queries that compute intersections or unions of regions
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End of Lecture 1


